Rainsoft Water Treatment Systems
Performance Data Rainsoft products such as the Ultrefiner II undergo third-party testing to verify performance of our water treatment systems. They are tested and certified by NSF International against NSF/ANSI 58 for the reduction of claims specified on the performance data sheet. Other filters, such as the QRS, have been tested and certified by the Water Quality Association (WQA) to NSF/ANSI Standards 42 & 53 for the specific performances as verified and substantiated by test data. Refer to Rainsoft's performance data sheets below for specific claims and certifications. |
Leading the Drinking Water Industry with Standards Compliance
Rainsoft has products that are NSF-certified for:
|
|
|
|
|
Drinking Water Filter Standards in the United States
The Safe Drinking Water Act (SDWA) originally was passed by Congress in 1974 to protect public health by regulating the nation’s public drinking water supply. The law was amended in 1986 and 1996 and requires many actions to protect drinking water and its sources: rivers, lakes, reservoirs, springs, and ground water wells. SDWA authorizes the United States Environmental Protection Agency (EPA) to set national health-based standards for drinking water to protect against both naturally-occurring and man-made contaminants that may be found in drinking water. The EPA, individual states, and water systems then work together to make certain that these standards are met.
Founded in 1918, the American National Standards Institute (ANSI) is a private, not-for-profit organization serving as the official U.S. representative to the International Organization for Standardization (ISO) and, via the U.S. National Committee, the International Electrotechnical Commission (IEC). ANSI is also a member of the International Accreditation Forum (IAF). ANSI accredits and coordinates several hundred organizations and committees that develop standards for approval as American National Standards based in part on evidence of due process and consensus. ANSI provides the criteria and procedures for achieving due process and determining consensus, as Why Standards Matter For Drinking Water Filters Raising The Bar For Performance Measurement well as other requirements for the development, approval, maintenance and coordination of American National Standards. These ANSI criteria and requirements are accepted by each accredited standards developer as a condition of accreditation.
NSF International (NSF) is one such ANSI accredited organization (Accreditation ID 0216). NSF was founded in 1944 as an organization devoted to public health safety and protection of the environment. Today, NSF is the leading global, independent third-party certification and testing organization for products that affect water quality and food safety. NSF is recognized as the leading authority in the development of consensus, establishing national standards that bring together experts from the regulatory, manufacturing, academic, scientific research, and consumer industries. These comprehensive standards provide the basis by which product manufacturers can demonstrate the quality, reliability and performance of their products, and through which buyers, consumers and health officials can be assured of their safety and benefits.
The NSF Drinking Water Treatment Units (DWTU) Certification Program for Point-Of-Use (POU) and Point-Of-Entry (POE) systems and components was first established in the early 1970s, beginning with the adoption of the first NSF DWTU Standard in 1973. Based upon Maximum Contaminant Level (MCL) standards established by the EPA, and working within the auditing framework defined by ANSI, NSF sets the standards for compliance and testing for drinking water filters and systems. Today, a total of seven NSF DWTU Standards have been adopted, to which hundreds of companies have certified thousands of POU and POE systems and components used around the world to improve and protect drinking water quality.
At a regional level, a limited number of states enforce their own compliance standards for drinking water systems sold within the state. States with their own standards include California, Colorado, Iowa, Massachusetts, and Wisconsin. In most instances, states will recognize NSF certification as acceptable proof of drinking water system performance.
NSF also is an active participant in testing and certification at the international level. Countries throughout the world are developing and adopting standards for the evaluation of POU and POE drinking water treatment units. For example, the European Committee for Standardization (CEN) has been developing such standards, also referred to as European Norms, for all of Europe.
Founded in 1918, the American National Standards Institute (ANSI) is a private, not-for-profit organization serving as the official U.S. representative to the International Organization for Standardization (ISO) and, via the U.S. National Committee, the International Electrotechnical Commission (IEC). ANSI is also a member of the International Accreditation Forum (IAF). ANSI accredits and coordinates several hundred organizations and committees that develop standards for approval as American National Standards based in part on evidence of due process and consensus. ANSI provides the criteria and procedures for achieving due process and determining consensus, as Why Standards Matter For Drinking Water Filters Raising The Bar For Performance Measurement well as other requirements for the development, approval, maintenance and coordination of American National Standards. These ANSI criteria and requirements are accepted by each accredited standards developer as a condition of accreditation.
NSF International (NSF) is one such ANSI accredited organization (Accreditation ID 0216). NSF was founded in 1944 as an organization devoted to public health safety and protection of the environment. Today, NSF is the leading global, independent third-party certification and testing organization for products that affect water quality and food safety. NSF is recognized as the leading authority in the development of consensus, establishing national standards that bring together experts from the regulatory, manufacturing, academic, scientific research, and consumer industries. These comprehensive standards provide the basis by which product manufacturers can demonstrate the quality, reliability and performance of their products, and through which buyers, consumers and health officials can be assured of their safety and benefits.
The NSF Drinking Water Treatment Units (DWTU) Certification Program for Point-Of-Use (POU) and Point-Of-Entry (POE) systems and components was first established in the early 1970s, beginning with the adoption of the first NSF DWTU Standard in 1973. Based upon Maximum Contaminant Level (MCL) standards established by the EPA, and working within the auditing framework defined by ANSI, NSF sets the standards for compliance and testing for drinking water filters and systems. Today, a total of seven NSF DWTU Standards have been adopted, to which hundreds of companies have certified thousands of POU and POE systems and components used around the world to improve and protect drinking water quality.
At a regional level, a limited number of states enforce their own compliance standards for drinking water systems sold within the state. States with their own standards include California, Colorado, Iowa, Massachusetts, and Wisconsin. In most instances, states will recognize NSF certification as acceptable proof of drinking water system performance.
NSF also is an active participant in testing and certification at the international level. Countries throughout the world are developing and adopting standards for the evaluation of POU and POE drinking water treatment units. For example, the European Committee for Standardization (CEN) has been developing such standards, also referred to as European Norms, for all of Europe.
NSF/ANSI Standards for Drinking Water Treatment Units
Of the seven NSF DWTU Standards, this paper primarily focuses on the two that are applicable to POU devices employing filtration technology:
It’s worth noting that a device may be certified under this and other NSF/ANSI Standards for specific contaminant reduction (e.g., chlorine) by meeting just the minimum level of reduction required by the Standard, not necessarily by removing all of the contaminant present in the source water. With regard to particulate reduction, several classes are used to define the level of particulate reduction, ranging from Class VI for those devices removing coarse particulates of 50 micrometers and larger, to Class I for drinking water treatment units that reduce the smallest submicron particles (i.e., 0.5 to 1.0 micron).
NSF/ANSI Standard 53 addresses POU and POE systems designed to reduce specific health-related contaminants that may be present in public or private drinking water. Standard 53 establishes minimum requirements for material safety, structural integrity, product literature, and health related contaminant reduction performance claims. The most common technology addressed by NSF Standard 53 is carbon filtration, and the standard includes both POU and POE products. Some products fall under the scope of both Standards 42 and 53 because they claim a combination of aesthetic and health claims.
NSF tests and certifies under Standard 53 if a filter system reduces a significant amount of a specific harmful contaminant from drinking water. Such hazardous contaminants may be microbiological (including filterable cysts), chemical (including disinfection byproducts, pesticides, herbicides, and insecticides), or particulate in nature. NSF may certify that a DWTU may be effective in controlling one or more of the health effects contaminants. By carefully reviewing the performance data sheet for a product, you will be able to determine whether the device is effective in reducing many pollutants or just a few.
Another consideration in evaluating performance claims is to be aware of the role a Performance Indication Device (PID) plays in NSF product certification. A PID measures the actual water usage and notifies the consumer when it is time to replace the filter cartridge. A product manufacturer may incorporate a PID into the drinking water system to be able to certify the same system with a higher capacity. It should be noted that a drinking water filter with a PID actually is tested to 120% of the capacity claimed. Without a PID, the filter is tested to 200% of the capacity claimed. In both instances, actual performance is the same.
*The above research was first published by Carbon Block Technology.
- NSF/ANSI Standard 42 – Aesthetic Effects
- NSF/ANSI Standard 53 – Health Effects
It’s worth noting that a device may be certified under this and other NSF/ANSI Standards for specific contaminant reduction (e.g., chlorine) by meeting just the minimum level of reduction required by the Standard, not necessarily by removing all of the contaminant present in the source water. With regard to particulate reduction, several classes are used to define the level of particulate reduction, ranging from Class VI for those devices removing coarse particulates of 50 micrometers and larger, to Class I for drinking water treatment units that reduce the smallest submicron particles (i.e., 0.5 to 1.0 micron).
NSF/ANSI Standard 53 addresses POU and POE systems designed to reduce specific health-related contaminants that may be present in public or private drinking water. Standard 53 establishes minimum requirements for material safety, structural integrity, product literature, and health related contaminant reduction performance claims. The most common technology addressed by NSF Standard 53 is carbon filtration, and the standard includes both POU and POE products. Some products fall under the scope of both Standards 42 and 53 because they claim a combination of aesthetic and health claims.
NSF tests and certifies under Standard 53 if a filter system reduces a significant amount of a specific harmful contaminant from drinking water. Such hazardous contaminants may be microbiological (including filterable cysts), chemical (including disinfection byproducts, pesticides, herbicides, and insecticides), or particulate in nature. NSF may certify that a DWTU may be effective in controlling one or more of the health effects contaminants. By carefully reviewing the performance data sheet for a product, you will be able to determine whether the device is effective in reducing many pollutants or just a few.
Another consideration in evaluating performance claims is to be aware of the role a Performance Indication Device (PID) plays in NSF product certification. A PID measures the actual water usage and notifies the consumer when it is time to replace the filter cartridge. A product manufacturer may incorporate a PID into the drinking water system to be able to certify the same system with a higher capacity. It should be noted that a drinking water filter with a PID actually is tested to 120% of the capacity claimed. Without a PID, the filter is tested to 200% of the capacity claimed. In both instances, actual performance is the same.
*The above research was first published by Carbon Block Technology.